دانشجویان کامپیوتر اصفهان

وب سایت سابق(( دانشجویان کامپیوتر جهاد دانشگاهی یزد - خرم آباد ))

حافظه   RAM (خواندنی و نوشتنی)

همان طور که می دانید اطلاعات موقت رایانه با خاموش شدن سیستم کاملاً پاک می شود. به این صورت که اگر برنامه یا داده ای به رایانه داده باشید و به هر علتی برق رایانه قطع شود، پس از روشن شدن دوباره رایانه باید برنامه و یا اطلاعات را دوباره وارد کنید. پردازنده اطلاعات مورد نیاز خود را از حافظه رم دریافت می کند و عملیات لازم را انجام داده و سپس نتایج را در رم ذخیره می کند.

بنابر این این نوع حافظه خواندنی و نوشتنی است. هنگامی که رایانه را روشن می کنید حافظه اصلی کنترل و تست می شود. مقدار حجم تست شده روی صفحه نمایش مشاهده می شود.


 

انواع حافظه RAM

(Static random access memory) SRAM (استاتیک  )

این نوع حافظه ها از چندین ترانزیستور ( چهار تا شش) برای هر سلول حافظه استفاده می نمایند. برای هر سلول از خازن استفاده نمی گردد. این نوع حافظه در ابتدا بمنظور cache استفاده می شدند. 

(Dynamic random access memory) DRAM

 این نوع حافظه ها برای سلول های حافظه از یک زوج ترانزیستورو خازن استفاده می گردد .

حافظه های SRAM دارای یک تکنولوژی کاملا" متفاوت می باشند. در این نوع از حافظه ها از فلیپ فلاپ برای ذخیره سازی هر بیت حافظه استفاده می گردد. یک فلیپ فلاپ برای یک سلول حافظه، از چهار تا شش ترانزیستور استفاده می کند . حافظه های SRAM نیازمند بازخوانی / بازنویسی اطلاعات نخواهند بود، بنابراین سرعت این نوع از حافظه ها بمراتب از حافظه های DRAM بیشتر است .با توجه به اینکه حافظه های SRAM از بخش های متعددی تشکیل می گردد، فضای استفاده شده آنها بر روی یک تراشه بمراتب بیشتر از یک سلول حافظه از نوع DRAM خواهد بود. در چنین مواردی میزان حافظه بر روی یک تراشه کاهش پیدا کرده و همین امر می تواند باعث افزایش قیمت این نوع از حافظه ها گردد. بنابراین حافظه های SRAM سریع و گران و حافظه های DRAM ارزان و کند می باشند . با توجه به موضوع فوق ، از حافظه های SRAM بمنظور افزایش سرعت پردازنده ( استفاده از Cache  ) و از حافظه های DRAM برای فضای حافظه RAM در کامپیوتر استفاده می گردد.

حافظه دی رم جهت ذخیره اطلاعات خود از خازن استفاده می کند. خازن در حالت شارژ معادل یک است و در حالت دشارژ معادل صفر است. این حافظه باید به طور مداوم تغذیه الکتریکی شود تا بارهای مثبت و منفی را از دست ندهد. در این حالت در فاصله زمانی متناوب عملیات بازنویسی و تجدید اطلاعات صورت می پذیرد.

(Fast page mode dynamic random access memory) FPM DRAM

نسخه اولیه ای از حافظه های DRAM می باشند.در تراشه ای فوق تا زمان تکمیل فرآیند استقرار یک بیت داده توسط سطر و ستون مورد نظر، می بایست منتظر و در ادامه بیت خوانده خواهد شد.( قبل از اینکه عملیات مربوط به بیت بعدی آغاز گردد) .حداکثر سرعت ارسال داده به L2 cache معادل 176 مگابایت در هر ثانیه است .

 

 (Ed data-out dynamic random access memory) EDO DRAM

این نوع حافظه ها در انتظار تکمیل و اتمام پردازش های لازم برای اولین بیت نشده و عملیات مورد نظر خود را در رابطه با بیت بعد بلافاصله آغاز خواهند کرد. پس از اینکه آدرس اولین بیت مشخص گردید EDO DRAM عملیات مربوط به جستجو برای بیت بعدی را آغاز خواهد کرد. سرعت عملیات فوق پنج برابر سریعتر نسبت به حافظه های FPM است . حداکثر سرعت ارسال داده به L2 cache معادل 176 مگابایت در هر ثانیه است .

 

(Synchronous dynamic random access memory)  SDRM

از ویژگی "حالت پیوسته " بمنظور افزایش و بهبود کارائی استفاده می نماید .بدین منظور زمانیکه سطر شامل داده مورد نظر باشد ، بسرعت در بین ستون ها حرکت و بلافاصله پس از تامین داده ،آن را خواهد خواند. SDRAM دارای سرعتی معادل پنج برابر سرعت حافظه های EDO بوده و امروزه در اکثر کامپیوترها استفاده می گردد.حداکثر سرعت ارسال داده به L2 cache معادل 528 مگابایت در ثانیه است .

 

(Rambus dynamic random access memory) RDRAM

رویکرد کاملا" جدید نسبت به معماری قبلی DRAM است. این نوع حافظه ها از Rambus in-line memory module)RIMM) استفاده کرده که از لحاظ اندازه و پیکربندی مشابه یک DIMM استاندارد است. وجه تمایز این نوع حافظه ها استفاده از یک گذرگاه داده با سرعت بالا با نام "کانال Rambus " است . تراشه های حافظه RDRAM بصورت موازی کار کرده تا بتوانند به سرعت 800 مگاهرتز دست پیدا نمایند.

 

Credit card memory یک نمونه کاملا" اختصاصی از تولیدکنندگان خاص بوده و شامل ماژول های DRAM بوده که دریک نوع خاص اسلات ، در کامپیوترهای note Book استفاده می گردد .

PCMCIA memory card نوع دیگر از حافظه شامل ماژول های DRAM بوده که در notebook استفاده می شود .

 

ماژول های حافظه

تراشه های حافظه در کامییوترهای شخصی در آغاز از یک پیکربندی مبتنی بر Pin با نام  DIP(Dual-line-Package)  استفاده می کردند. این پیکربندی مبتنی بر پین، می توانست لحیم کاری درون حفره هائی برروی برداصلی کامپیوتر و یا اتصال به یک سوکت بوده که خود به برد اصلی لحیم شده است .همزمان با افزایش حافظه ، تعداد تراشه های مورد نیاز، فضای زیادی از برد اصلی را اشغال می کردند.از روش فوق تا زمانیکه میزان حافظه حداکثر دو مگابایت بود ، استقاده می گردید.

راه حل مشکل فوق، استقرار تراشه های حافظه بهمراه تمام عناصر و اجزای حمایتی در یک برد مدار چاپی مجزا (Printed circut Board) بود. برد فوق در ادامه با استفاده از یک نوع خاص از کانکنور ( بانک حافظه ) به برد اصلی متصل می گردید. این نوع تراشه ها اغلب از یک پیکربندی pin با نام Small Outline J-lead soj استفاده می کردند . برخی از تولیدکنندگان دیگر که تعداد آنها اندک است از پیکربندی دیگری با نام (Thin-Small-Outline-Package(tsop  استفاده می نمایند. تفاوت اساسی بین این نوع پین های جدید و پیکربندی DIP اولیه در این است که تراشه های SOJ و TSOR بصورت surface-mounted در PCB هستند. به عبارت دیگر پین ها مستقیما" به سطح برد لحیم خواهند شد . ( نه داخل حفره ها و یا سوکت).

تراشه‌های حافظه از طریق کارتهائی که "ماژول" نامیده می شوند قابل دستیابی و استفاده می باشند. شاید تاکنون با مشخصات یک سیستم که میزان حافظه خود را بصورت 32 * 8 , یا  16*4 اعلام مینماید، برخورده کرده باشید. اعداد فوق تعداد تراشه‌ها ضربدر ظرفیت هر یک از تراشه‌ها را که بر حسب مگابیت اندازه گیری می‌گردند، نشان می دهد. بمنظور محاسبه ظرفیت، می توان با تقسیم نمودن آن بر هشت میزان مگابایت را بر روی هر ماژول مشخص کرد. مثلا" یک ماژول 32 * 4، بدین معنی است که ماژول دارای چهار تراشه 32 مگابیتی است. با ضرب 4 در 32 عدد 128 (مگابیت) بدست می آید. اگر عدد فوق را بر هشت تقسیم نمائیم به ظرفیت 16 مگابایت خواهیم رسید.

نوع برد و کانکتور استفاده شده در حافظه های RAM، طی پنج سال اخیر تفاوت کرده است. نمونه‌های اولیه اغلب بصورت اختصاصی تولید می گردیدند. تولید کنندگان متفاوت کامپیوتر بردهای حافظه را بگونه‌ای طراحی می‌کردند که صرفا" امکان استفاده از آنان در سیستم های خاصی وجود داشت. در ادامه (SIMM (Single in-line memory مطرح گردید. این نوع از بردهای حافظه از 30 پین کانکتور استفاده کرده و طول آن حدود 3/5 اینچ و عرض آن یک اینچ بود ( یازده سانتیمتر در 2/5 سانتیمتر ). در اغلب کامپیوترها می‌بایست بردهای SIMM بصورت زوج هائی که دارای ظرفیت و سرعت یکسان باشند، استفاده گردد. علت این است که پهنای گذرگاه داده بیشتر از یک SIMM است. مثلا" از دو SIMM هشت مگابایتی برای داشتن 16 مگابایت حافظه بر روی سیستم استفاده می‌گردد. هر SIMM قادر به ارسال هشت بیت داده در هر لحظه خواهد بود با توجه به این موضوع که گذرگاه داده شانزده بیتی است از نصف پهنای باند استفاده شده و این امر منطقی بنظر نمی آید. در ادامه بردهای SIMM بزرگتر شده و دارای ابعاد 25 / 4 * 1 شدند (11 سانتیمتر در 2/5 سانتیمتر) و از 72 پین برای افزایش پهنای باند و امکان افزایش حافظه تا میزان 256 مگابایت بدست آمد.

بموازات افزایش سرعت و ظرفیت پهنای باند پردازنده‌ها، تولیدکنندگان از استاندارد جدید دیگری با نام dual in-line memory module) DIMM) استفاده کردند. این نوع بردهای حافظه دارای 168 پین و ابعاد 1 * 5/4 اینچ (تقریبا" 14 سانتیمتر در 2/5 سانتیمتر) بودند. ظرفیت بردهای فوق در هر ماژول از هشت تا 128 مگابایت را شامل و می توان آنها را بصورت تک (زوج الزامی نیست) استفاده کرد. اغلب ماژول‌های حافظه با 3/3 ولت کار می‌کنند. در سیستم های مکینتاش از 5 ولت استفاده می‌نمایند. یک استاندارد جدید دیگر با نام Rambus in-line memory module ، RIMM از نظر اندازه و پین با DIMM قابل مقایسه است ولی بردهای فوق ، از یک نوع خاص گذرگاه داده حافظه برای افزایش سرعت استفاده می نمایند.

اغلب بردهای حافظه در کامپیوترهای دستی (notebook) از ماژول های حافظه کاملا" اختصاصی استفاده می نمایند ولی برخی از تولیدکنندگان حافظه از استاندارد small outline dual in-line memory module) SODIMM استفاده می نمایند. بردهای حافظه SODIMM دارای ابعاد 1* 2 اینچ ( 5 سانتیمنتر در 5 /2 سانتیمنتر ) بوده و از 144 پین استفاده می نمایند. ظرفیت این نوع بردها ی حافظه در هر ماژول از 16 مگابایت تا 256 مگابایت می تواند باشد.

بررسی خطا

اکثر حافظه هائی که امروزه در کامپیوتر استفاده می گردند دارای ضریب اعتماد بالائی می باشند.در اکثر سیستم ها ،" کنترل کننده حافظه " درزمان روشن کردن سیستم عملیات بررسی صحت عملکرد حافظه را انجام می دهد. تراشه های حافظه با استفاده از روشی با نام Parity ، عملیات بررسی خطاء را انحام می دهند. تراشه های Parity دارای یک بیت اضافه برای هشت بیت داده می باشند.روشی که Parity بر اساس آن کار می کند بسیار ساده است . در ابتداParity زوج بررسی می گردد. زمانیکه هشت بیت ( یک بایت) داده ئی را دریافت می دارند، تراشه تعداد یک های موجود در آن را محاسبه می نماید.در صورتیکه تعداد یک های موجود فرد باشد مقدار بیت Parity یک خواهد شد. در صورتیکه تعداد یک های موجود زوج باشد مقدار بیت parity صفر خواهد شد. زمانیکه داده از بیت های مورد نظر خوانده می شود ، مجددا" تعداد یک های موجود محاسبه و با بیت parity مقایسه می گردد.درصورتیکه مجموع فرد و بیت Parity مقدار یک باشد داده مورد نظر درست بوده و برای پردازنده ارسال می گردد. اما در صورتیکه مجموع فرد بوده و بیت parity صفر باشد تراشه متوجه بروز یک خطاء در بیت ها شده و داده مورد نظر کنار گذاشته می شود. parity فرد نیز به همین روش کار می کند در روش فوق زمانی بیت parity یک خواهد شد که تعداد یک های موجود در بایت زوج باشد.

مسئله مهم در رابطه با Parity عدم تصحیح خطاء پس از تشخیص است . در صورتیکه یک بایت از داده ها با بیت Parity خود مطابقت ننماید داده دور انداخته شده سیستم مجددا" سعی خود را انجام خواهد داد. کامپیوترها نیازمند یک سطح بالاتربرای برخورد با خطاء می باشند.برخی از سیستم ها از روشی با نام به (error correction code)ECC استفاده می نمایند. در روش فوق از بیت های اضافه برای کنترل داده در هر یک از بایت ها استفاده می گردد. اختلاف روش فوق با روش Parity در این است که از چندین بیت برای بررسی خطاء استفاده می گردد. ( تعداد بیت های استفاده شده بستگی به پهنای گذرگاه دارد ) حافظه های مبتنی بر روش فوق با استفاده از الگوریتم مورد نظر نه تنها قادر به تشخیص خطا بوده بلکه امکان تصحیح خطاهای بوجود آمده نیز فراهم می گردد. ECCهمچنین قادر به تشخیص خطاها در مواردی است که یک یا چندین بیت در یک بایت با مشکل مواجه گردند .


نویسنده : م . رحمتی - ساعت ۸:۳٥ ‎ق.ظ روز سه‌شنبه ۱۳۸٧/٦/۱٩
نظرات ()    |   لینک ثابت    |   تگ کامپیوتر


Powered By Persianblog.ir - Designed By Payam salami pargoo